Science posts
See science posts on page 51 below.
-
- 2014
- Gerlach KD et al
-
Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations
- We spend much of our daily lives imagining how we can reach future goals and what will happen when we attain them. Despite the prevalence of such goal-directed simulations, neuroimaging studies on planning have mainly focused on executive processes in the frontal lobe. This experiment examined the neural basis of process simulations, during which participants imagined themselves going through steps toward attaining a goal, and outcome simulations, during which participants imagined events they associated with achieving a goal. In the scanner, participants engaged in these simulation tasks and an odd/even control task. We hypothesized that process simulations would recruit default and frontoparietal control network regions, and that outcome simulations, which allow us to anticipate the affective consequences of achieving goals, would recruit default and reward-processing regions. Our analysis of brain activity that covaried with process and outcome simulations confirmed these hypothes..
-
-
-
- 2011
- McMains S et al
-
Interactions of top-down and bottom-up mechanisms in human visual cortex
- Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus-driven mechanisms. Because these two processes cooperate in everyday life to bias processing toward behaviorally relevant or particularly salient stimuli, it has proven difficult to study interactions between top-down and bottom-up mechanisms. Here, we used an experimental paradigm in which we first isolated the effects of a bottom-up influence on neural competition by parametrically varying the degree of perceptual grouping in displays that were not attended. Second, we probed the effects of directed attention on the competitive interactions induced with the parametric design. We found that t..
-
-
-
- 2001
- Sarter M et al
-
The cognitive neuroscience of sustained attention: where top-down meets bottom-up
- The psychological construct 'sustained attention' describes a fundamental component of attention characterized by the subject's readiness to detect rarely and unpredictably occurring signals over prolonged periods of time. Human imaging studies have demonstrated that activation of frontal and parietal cortical areas, mostly in the right hemisphere, are associated with sustained attention performance. Animal neuroscientific research has focused on cortical afferent systems, particularly on the cholinergic inputs originating in the basal forebrain, as crucial components of the neuronal network mediating sustained attentional performance. Sustained attention performance-associated activation of the basal forebrain corticopetal cholinergic system is conceptualized as a component of the 'top-down' processes initiated by activation of the 'anterior attention system' and designed to mediate knowledge-driven detection and selection of target stimuli. Activated cortical cholinergic inputs fac..
-
-
-
- 2014
- Peters S et al
-
The neural coding of feedback learning across child and adolescent development
- The ability to learn from environmental cues is an important contributor to successful performance in a variety of settings, including school. Despite the progress in unraveling the neural correlates of cognitive control in childhood and adolescence, relatively little is known about how these brain regions contribute to learning. In this study, 268 participants aged 8-25 years performed a rule-learning task with performance feedback in a 3T MRI scanner. We examined the development of the frontoparietal network during feedback learning by exploring contributions of age and pubertal development. The pFC showed more activation following negative compared with positive feedback with increasing age. In contrast, our data suggested that the parietal cortex demonstrated a shift from sensitivity to positive feedback in young children to negative feedback in adolescents and adults. These findings were interpreted in terms of separable contributions of the frontoparietal network in childhood t..
-
-
-
- 2007
- Biyu J. He et al
-
Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect
- Spatial neglect is a syndrome following stroke manifesting attentional deficits in perceiving and responding to stimuli in the contralesional field. We examined brain network integrity in patients with neglect by measuring coherent fluctuations of fMRI signals (functional connectivity). Connectivity in two largely separate attention networks located in dorsal and ventral frontoparietal areas was assessed at both acute and chronic stages of recovery. Connectivity in the ventral network, part of which directly lesioned, was diffusely disrupted and showed no recovery. In the structurally intact dorsal network, interhemispheric connectivity in posterior parietal cortex was acutely disrupted but fully recovered. This acute disruption, and disrupted connectivity in specific pathways in the ventral network, strongly correlated with impaired attentional processing across subjects. Lastly, disconnection of the white matter tracts connecting frontal and parietal cortices was associated with mo..
-
-
-
- 2012
- Marklund P et al
-
Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus
- A critical feature of higher cognitive functioning is the capacity to flexibly tailor information processing and behaviors to current situational demands. Recent neurocognitive models have been postulated to account for the dynamic nature of human executive processing by invoking two dissociable cognitive control modes, proactive and reactive control. These may involve partially overlapping, but temporally distinct neural implementation in the prefrontal cortex. Prior brain imaging studies exploring proactive control have mainly used tasks requiring only information about single-items to be retained over unfilled delays. Whether proactive control can also be utilized to facilitate performance in more complex working memory tasks, in which concurrent processing of intervening items and updating is mandatory during contextual cue maintenance remains an open question. To examine this issue and to elucidate the extent to which overlapping neural substrates underlie proactive and reactive..
-
-
-
- 2011
- Ruth M. Ford et al
-
Executive and theory-of-mind contributions to event-based prospective memory in children: Exploring the self-projection hypothesis
- In two studies, 4- to 6-year-olds were asked to name pictures of animals for the benefit of a watching hand puppet (the ongoing task) but to refrain from naming and to remove from view any pictures of dogs (the prospective memory [PM] task). Children also completed assessments of verbal ability, cognitive inhibition, working memory, and false-belief understanding (both studies), empathy (Study 1 only), and performance on false-sign tests that matched the false-belief tests in narrative content and structure (Study 2 only). Both studies found that inhibition and false-belief performance made unique contributions to the variance in PM, although in Study 1 the influence of inhibition was evident only when children needed to withhold naming. Study 2 further demonstrated that false-belief performance was the only reliable predictor of whether children remembered to return to the researcher an object that had been loaned to them prior to the picture-naming game. Both experiments uncovered ..
-
-
-
- 2012
- Muireann Irish et al
-
Considering the role of semantic memory in episodic future thinking: evidence from semantic dementia
- Semantic dementia is a progressive neurodegenerative condition characterized by the profound and amodal loss of semantic memory in the context of relatively preserved episodic memory. In contrast, patients with Alzheimer's disease typically display impairments in episodic memory, but with semantic deficits of a much lesser magnitude than in semantic dementia. Our understanding of episodic memory retrieval in these cohorts has greatly increased over the last decade, however, we know relatively little regarding the ability of these patients to imagine and describe possible future events, and whether episodic future thinking is mediated by divergent neural substrates contingent on dementia subtype. Here, we explored episodic future thinking in patients with semantic dementia (n = 11) and Alzheimer's disease (n = 11), in comparison with healthy control participants (n = 10). Participants completed a battery of tests designed to probe episodic and semantic thinking across past and future ..
-
-
-
- 2006
- Randy L. Buckner et al
-
Self-projection and the brain
- When thinking about the future or the upcoming actions of another person, we mentally project ourselves into that alternative situation. Accumulating data suggest that envisioning the future (prospection), remembering the past, conceiving the viewpoint of others (theory of mind) and possibly some forms of navigation reflect the workings of the same core brain network. These abilities emerge at a similar age and share a common functional anatomy that includes frontal and medial temporal systems that are traditionally associated with planning, episodic memory and default (passive) cognitive states. We speculate that these abilities, most often studied as distinct, rely on a common set of processes by which past experiences are used adaptively to imagine perspectives and events beyond those that emerge from the immediate environment.
-
-
-
- 2013
- Ulrike Basten
-
Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network
- Previous studies on individual differences in intelligence and brain activation during cognitive processing focused on brain regions where activation increases with task demands (task-positive network, TPN). Our study additionally considers brain regions where activation decreases with task demands (task-negative network, TNN) and compares effects of intelligence on neural effort in the TPN and the TNN. In a sample of 52 healthy subjects, functional magnetic resonance imaging was used to determine changes in neural effort associated with the processing of a working memory task. The task comprised three conditions of increasing difficulty: (a) maintenance, (b) manipulation, and (c) updating of a four-letter memory set. Neural effort was defined as signal increase in the TPN and signal decrease in the TNN, respectively. In both functional networks, TPN and TNN, neural effort increased with task difficulty. However, intelligence, as assessed with Raven's Matrices, was differentially ass..
-
-